Exercise 9

In Exercises 9 to 12, describe all unit vectors orthogonal to both of the given vectors.

i, \mathbf{j}

Solution

Each of the vectors can be written as

$$
\begin{aligned}
& \hat{\mathbf{x}}=(1,0,0) \\
& \hat{\mathbf{y}}=(0,1,0) .
\end{aligned}
$$

Take the cross product of these two to obtain a vector orthogonal to both of them.

$$
\begin{aligned}
\hat{\mathbf{x}} \times \hat{\mathbf{y}} & =\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right| \\
& =\left|\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right| \hat{\mathbf{x}}-\left|\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right| \hat{\mathbf{y}}+\left|\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right| \hat{\mathbf{z}} \\
& =(0-0) \hat{\mathbf{x}}-(0-0) \hat{\mathbf{y}}+(1-0) \hat{\mathbf{z}} \\
& =\hat{\mathbf{z}} \\
& =(0,0,1)
\end{aligned}
$$

There are two unit vectors orthogonal to \mathbf{i} and $\mathbf{j}: \pm(0,0,1)$.

